Wie bei der Produktregel, dürfen wir auch bei einem Bruch von zwei Teilfunktionen keine Regel in der Form der Summenregel anwenden. Eine Ableitung eines Bruchs ist nicht gleich dem Bruch der Ableitungen!

Wenn eine Funktion $f$ ein Bruch von zwei Teilfunktionen $u$ und $v$ ist, wenden wir die Quotientenregel an:

\[ f(x) = \frac{u(x)}{v(x)} \]

\[ \rightarrow f'(x) = \frac{u’ \cdot v-u \cdot v’}{v^2} \]

Beispiel

Berechne die erste Ableitung der Funktion $f(x)$:

\[ f(x) = \frac{\sin(x)}{x} \]


Wir stellen zuerst die Teilfunktionen und deren erste Ableitungen auf:

\[ u(x)=\sin(x) \]

\[ \rightarrow u'(x) = \cos(x) \]

\[ v(x)=x \quad \rightarrow \quad v'(x) = 1 \]

Nun können wir die Quotientenregel anwenden:

\[ f'(x) = \frac{u’ \cdot v-u \cdot v’}{v^2} \]

\[ = \frac{\cos(x) \cdot x – \sin(x) \cdot 1}{x^2} \]

\[ f'(x) = \underline{\frac{x \cos(x) – \sin(x)}{x^2} } \]