Das Wichtigste in Kürze

Die Beschleunigungsarbeit ist eine Art von physikalischer Arbeit. Sie wird verrichtet, wenn eine Masse von der Geschwindigkeit \(v_1\) auf die Geschwindigkeit \(v_2\) beschleunigt wird:

\[ W = \frac{1}{2} m v_2^2 – \frac{1}{2} m v_1^2 \]

Videos

      • Arbeit – Porsche Taycan (0004)

      Beschleunigungsarbeit
      Beschleunigungsarbeit: Der Golfschäger wirkt mit einer Kraft \(F\) auf den Golfball und das über eine gewisse Strecke \(\Delta s\). Dadurch wird am Ball Arbeit verrichtet und er wird beschleunigt.

      Beschleunigung und Bremsen

      Wir wissen, dass Newtons Zweites Gesetz \(F=m \cdot a\) besagt, dass eine Kraft \(F\) eine Masse \(m\) beschleunigt (Beschleunigung \(a\)). Anders herum können wir eine Beschleunigung einer Masse nur mit Hilfe einer Kraft erreichen. Ausser der Kraft, braucht es zusätzlich einen gewissen Weg \(\Delta s\), über welchen die Kraft wirksam ist.

      Für die Beschleunigung, z.B. wenn wir mit dem Fahrrad schneller werden möchten, oder wenn das Auto beschleunigen möchte, braucht es eine Antriebskraft.

      Für das Bremsen gilt genau das Gleiche. Um langsamer zu werden, was einer negativen Beschleunigung entspricht, braucht es eine bremsende Kraft, die entgegen der Wegrichtung gerichtet ist. In den meisten Fällen ist die bremsende Kraft eine Reibungskraft, d.h. hier darf man auch von (negativer) Reibungsarbeit sprechen.

      Beschleunigungsarbeit Beispiel: Golfball

      Ein Golfball (\(m=45.93\,\text{g}\)) wird durch einen Schlag auf eine Geschwindigkeit von 300 km/h gebracht.

      Wie viel beträgt die Beschleunigungsarbeit?

      Wir nehmen die Formel für die Beschleunigungsarbeit. Da die Geschwindigkeit \(v_1\) zu Beginn null ist, verschwindet der zweite Teil:

      \[ \require{cancel} W = \frac{1}{2} m v_2^2 – \cancel{\frac{1}{2} m v_1^2} \]

      Jetzt setzen wir \(v_2 = \frac{300}{3.6} \, \frac{\text{m}}{\text{s}}\) ein und erhalten die Beschleunigungsarbeit:

      \[ W = \frac{1}{2} \cdot 0.04593\,\text{kg} \cdot \Big( \frac{300}{3.6} \, \frac{\text{m}}{\text{s}} \Big)^2 \]

      \[ W = \underline{159.5\,\text{J}} \]

      Änderung der Richtung

      Es gibt auch Fälle, in welchen eine Kraft über einen Weg wirkt, ohne dass die Masse schneller oder langsamer wird. Wenn die Kraft und der Weg senkrecht zu einander stehen, ändert die Kraft nur die Richtung der Geschwindigkeit, nicht deren Betrag.

      Ohne Änderung des Betrags der Geschwindigkeit, ändert sich energetisch nichts. Die Masse wird durch die Kraft nur umgelenkt, jedoch weder beschleunigt, noch abgebremst.

      Solche Kräfte sind Zentripetalkräfte bei einer Kreisbewegung.

      Die Lorentzkraft wirkt immer senkrecht zur Geschwindigkeit der elektrischen Ladung, so dass sie nicht in der Lage ist, Beschleunigungsarbeit zu verrichtet. Sie lenkt die Ladung nur ab.

      Herleitung der Beschleunigungsarbeit Formel

      Wir starten mit dem allgemeinen Ausdruck für die Arbeit:

      \[ W = F \cdot \Delta s \]

      Nun setzen wir für \(F\) das Newton’sche Zweite Gesetz \(F=m \cdot a\) ein:

      \[ W = (ma) \cdot \Delta s = m \cdot a \Delta s \]

      Für die Beschleunigung \(a\) können wir die folgende Bewegungsgleichung einsetzen:

      \[ v_2^2 = v_1^2 + 2 a \Delta s \]

      Wir lösen nach \(a \Delta s\) auf und setzen ein

      \[ a \Delta s = \frac{1}{2} (v_2^2 – v_1^2) \]

      \[ W = m \cdot \frac{1}{2} (v_2^2 – v_1^2) \]

      Damit erhalten wir den Ausdruck für die Beschleunigungsarbeit, die verrichtet werden muss, um eine Masse \(m\) von \(v_1\) auf \(v_2\) zu beschleunigen:

      \[ W = \frac{1}{2} m v_2^2 – \frac{1}{2} m v_1^2 \]

      Aufgabensammlung

      • Porsche Taycan (0004)

        3 Teilaufgaben mit Lösungen (pdf/Video):
        • Berechnung der Beschleunigungsarbeit
        • Einfluss der Geschwindigkeit

        Du musst dich hier einloggen, um zur Aufgabe zu gelangen.

        Login

        Noch kein Login?

        Jetzt gratis Zugang erhalten

      Weitere Links

      Feedback

      Post Feedback Form

      Autor dieses Artikels:

      David John Brunner

      Lehrer für Physik und Mathematik | Mehr erfahren

      publiziert:

      überarbeitet:

      publiziert:

      überarbeitet:

      Frage oder Kommentar?

      Frage/Kommentar?

      Schreib deine Frage / Kommentar hier unten rein. Ich werde sie beantworten.

      Schreibe einen Kommentar

      GRATIS Scripts und Formelsammlungen
      Praktische Hacks lernen…
      …im Hacker-Club!
      Andere Artikel zu diesem Thema
      • Potenzielle Energie (Lageenergie)

      • Innere Energie

      • Energie

      • Spannarbeit

      • Reibungsarbeit