Das Wichtigste in Kürze

Summenregel der Integralrechnung:

\[ \int \Big( f(x) + g(x) \; \Big) dx = \int f(x) \; dx + \int g(x) \; dx \]

Die Summenregel der Integrationsrechnung folgt direkt aus der Summenregel der Differentialrechnung. Dort hatten wir gesehen, dass die Ableitung einer Summe gleich der Summe der einzelnen Ableitungen ist. Wir leiten eine Summe ab, indem wir jeden Summanden einzeln ableiten und dann die Ableitungen summieren.

Bei der Integration geht es genau gleich. Das Integral einer Summe kann für jeden Summanden einzeln gelöst werden. Die Resultate dieser einzelnen Integrale können am Schluss addiert werden.

Summenregel der Integralrechnung: 

\[ \int \Big( f(x) + g(x) \; \Big) dx = \int f(x) \; dx + \int g(x) \; dx \]

Beispiel

Berechne das folgende Integral mit Hilfe der Summen- und Faktorregel.

\[ \int \Big( 2 \cos(x) + 3x \Big) \; dx \]


Wir schreiben für jeden Summanden ein eigenes Integral (Summenregel):

\[ \int \Big( 2 \cos(x) + 3x \Big) \; dx = \int 2 \cos(x) \; dx + \int 3 x \; dx \]

Dann klammern wir mit der Faktorenregel die konstanten Faktoren aus:

\[ = 2 \cdot \int \cos(x) \; dx \;\; + \;\; 3 \cdot \int x \; dx \]

Jetzt können die vereinfachten Integrale gelöst werden.

\[ = 2 \cdot \sin(x) + C_1 \;\; + \;\; 3 \cdot \frac{1}{2} x^2 + C_2 \]

\[ = \underline{2 \cdot \sin(x) + \frac{3}{2} x^2 + C} \]

Beachte, dass wir die zwei unbekannten Konstanten \(C_1\) und \(C_2\) der unbestimmten Integrale einfach in einer Konstante \(C\) zusammengefasst haben.

Feedback

Post Feedback Form

Autor dieses Artikels:

David John Brunner

Lehrer für Physik und Mathematik | Mehr erfahren

publiziert:

überarbeitet:

publiziert:

überarbeitet:

Frage oder Kommentar?

Frage/Kommentar?

Schreib deine Frage / Kommentar hier unten rein. Ich werde sie beantworten.

Schreibe einen Kommentar

GRATIS Scripts und Formelsammlungen
Praktische Hacks lernen…
…im Hacker-Club!
Übergeordnetes Thema:
    • Integrale

    Weitere Artikel zu diesem Thema:
      • Integrale gerader und ungerader Funktionen

      • Uneigentliche Integrale

      • Integrationsgrenzen

      • Faktorregel der Integralrechnung

      • Flächenberechnung

      • Hauptsatz der Integralrechnung