Erzwungene Schwingungen der Saite durch Streichen eines Bogens
      Erzwungene Schwingungen der Saite durch Streichen eines Bogens, Image by Manuel Nägeli, shared on Unsplash

      Erzwungene Schwingung beim Geigenbogen

      Die Saiten der Geige werden mit dem Geigenbogen in Schwingung gebracht. Auf dem Bogen gespannt sind Haare, die unter dem Mikroskop eine deutlich erkennbare Schuppenstruktur aufweisen.

      Diese Schuppen ragen etwas heraus, ein bisschen wie ein Sägeblatt, d.h. wenn der Bogen über die Saite gestrichen wird, nimmt dieser die Saite ein Stückchen mit und spannt die Saite dadurch.

      Irgendwann wird die Rückstellkraft der Saite jedoch zu gross und die Saite spickt zurück, bis sie wieder vom Bogen aufgefangen und auf ein Neues gespannt wird.

      Erzwungene Schwingungen (Bogen regt Saite an)

      Der Bogen zieht die Saite mit, bis die Saitenkraft für den Bogen zu gross wird.
      Erzwungene Schwingungen (Bogen regt Saite an)
      Die Saite spickt zurück und wird kurz darauf vom nächsten Haken erfasst, der die Saite wieder nach rechts zieht.

      Der Bogen bringt die Saite in Schwingung, indem er sie mit einer anderen Schwingung anregt. Es handelt sich also um zwei Schwingungen: die Anregungsschwingung und die Systemschwingung.

      Die Anregungsschwingung hat die sog. Anregungsfrequenz \(\omega_A\). Das System schwingt aber nicht mit dieser Frequenz, sondern versucht mit der Eigenfrequenz \(\omega_0\) zu schwingen.

      Wenn ein schwingfähiges System mit Eigenfrequenz \(\omega_0\) durch eine andere Schwingung mit Anregungsfrequenz \(\omega_A\) angeregt wird, reden wir von einer erzwungenen Schwingung.

      Resonanz

      Die Art, wie sich ein schwingfähiges System bei einer erzwungenen Schwingung verhält, ist im folgenden Diagramm zusammengefasst: In der Vertikalen haben wir den Verstärkungsfaktor der sich auf die Amplitude der Schwingung auswirkt. In der Horizontalen ist die Anregungsfrequenz \(\omega_A\) aufgezeichnet bzw. deren Verhältnis im Vergleich zur Eigenfrequenz \(\omega_0\).

      Uns fällt sofort auf, dass etwas “dramatisches” passiert, wenn \(\frac{\omega_A}{\omega_0}=1\), d.h. wenn beide Frequenzen gleich gross sind. Bei schwacher Dämpfung kommt ein System in die sog. Resonanz. Bei sehr kleiner Dämpfung kommt es gar zur Resonanzkatastrophe!

      Einfluss der Dämpfung auf die Resonanz bei erzwungenen Schwingungen
      Resonanz entsteht bei (oder nahe bei) der Eigenfrequenz \(\omega_A \approx \omega_0\), wenn die Dämpfung schwach ist. Je stärker die Dämpfung, desto mehr wird der Resonanzeffekt unterdrückt.

      Für Bauingenieure ist Resonanz in den meisten Fällen tatsächlich eine Katastrophe. Im Jahr 1940 kollabierte die Hängebrücke Tacoma Narrows Bridge im Staat Washington. Gerade mal vier Monate nach ihrer Fertigstellung regten sehr starke Winde die Brücke mit einer Anregungsfrequenz \(\omega_A\) an, die gleich oder fast gleich der Eigenfrequenz \(\omega_0\) der Brücke entsprach.

      Mangelnde Dämpfung führte dazu, dass die Amplitude der Schwingung immer grösser wurde und die Brücke immer stärker ins Schwingen kam, bis gewisse Tragseile rissen und die ganze Brücke auseinanderfiel.

      Bei Musikinstrumenten ist die Resonanz meistens ein gewünschter Zustand, weil die Schwingungen der Saite die dünnen Holzwände des sog. Resonanzkörpers des Saiteninstruments ins Schwingen bringen. Diese Schwingungen erzeugen den vollen Klang, den wir von so einem Instrument erwarten.

      Ist die Anregungsfrequenz \(\omega_A\) (deutlich) kleiner als die Eigenfrequenz \(\omega_0\), d.h. wenn \(\frac{\omega_A}{\omega_0} < 1\), dann ist der Faktor der Verstärkung der Amplitude näherungsweise 1, d.h. das System schwingt, aber mit der Amplitude der Anregung.

      Wir können uns das bei einer Kinderschaukel veranschaulichen. Normalerweise stösst der Erwachsene das Kind mit der Eigenfrequenz an, so dass die Schaukel immer grössere Ausschläge macht (gewollte Resonanz). Wenn der Erwachsene aber viel zu langsam anstossen sollte, dann würde das Kind lediglich zusammen mit der Anregung “schwingen”.

      Im anderen Fall, wenn die Anregungsfrequenz \(\omega_A\) (deutlich) grösser als die Eigenfrequenz \(\omega_0\) ist, d.h. wenn \(\frac{\omega_A}{\omega_0} > 1\), dann ist das ein viel zu schnelles Hin- und Her, so dass die Schaukel gar nicht “in die Gänge” kommt. Jede Eigenschwingung wird durch die darauffolgende Anregung wieder zunichte gemacht. Die Amplitude geht gegen null.

      Resonanz entsteht, wenn ein schwingfähiges System mit (Eigenfrequenz \(\omega_0\)) mit einer Schwingung angeregt wird (Anregungsfrequenz \(\omega_A\)) und beide Frequenzen (fast) gleich sind und die Dämpfung sehr schwach ist.

      Mit jeder Anregung wird ein kleiner Energiebetrag dem System zugeführt, zusätzlich ist das aber ein Betrag zum richtigen Zeitpunkt (Frequenz) und in die richtige Richtung, so dass das System sich aufschaukelt und die Amplitude immer grösser wird.

      Die Dämpfung spielt bei der Resonanz eine ganz wichtige Rolle. Je stärker sie ins Gewicht fällt, desto schneller wird Energie wieder aus dem System genommen, indem sie in Wärme umgewandelt wird. Die kritische Dämpfung ist die Grenze, ab welcher das System gar nicht mehr schwingt, sondern nur noch abklingt.

      Wenn Resonanz ein Aufschaukeln bzw. Aufsummieren von kleinen Energiebeträgen ist, alle mit einer sich aufsummierenden Wirkung, dann nimmt eine genug grosse Dämpfung genug Energie aus dem System, so dass das System gar nicht aufgeschaukelt werden kann.

      Verschiedene Fälle von Anregung

      Wir werden jetzt ein paar Beispiele uns anschauen. Im ersten Fall ist die Anregungsfrequenz \(\omega_A\) grösser als die Eigenfrequenz \(\omega_0\). Im Diagramm sind wir rechts der Marke \(\frac{\omega_A}{\omega_0}=1\), weil \(\omega_A > \omega_0\). Die Amplitude der Systemschwingung ist im Vergleich zur Anregungsschwingung schwächer (Abschwächung).

      Anregung bei unpassender Frequenz (erzwungene Schwingung)
      Wird ein schwingfähiges System mit einer zu hohen oder einer zu tiefen Frequenz angeregt, so kommt es zu einer abgeschwächten Schwingung. Im obigen Beispiel ist die Anregungsfrequenz \(\omega_A\) etwa dreimal grösser als die Eigenfrequenz \(\omega_0\), so dass die Amplitude des schwingfähigen Systems abgeschwächt ist.

      Im zweiten Fall regen wir mit einer Anregungsfrequenz \(\omega_A \approx \omega_0\) an, d.h. wo die Anregungsfrequenz (fast) gleich der Eigenfrequenz des Systems ist. Bei schwacher Dämpfung wird selbst bei kleiner Anregungsamplitude, das System in Resonanz kommen und immer stärker schwingen.

      Im Diagramm erkennen wir, dass der Verstärkungsfaktor von der Dämpfung abhängt. Je schwächer die Dämpfung, desto grösser ist die Amplitudenverstärkung.

      Anregung bei schwacher Dämpfung (erzwungene Schwingung)
      Wird ein schwingfähiges System mit Eigenfrequenz angeregt so wird bei schwacher Dämpfung die Amplitude verstärkt. Bei zu schwacher Dämpfung kann es zur Resonanzkatastrophe führen.

      Wenn die Dämpfung sehr stark gewählt wird, wird selbst bei einer Anregung bei der gefährlichen Eigenfrequenz \(\omega_0\) das System von einer Resonanz verschont. Im Diagramm sind wir zwar bei der gefährlichen Frequenz \(\omega_0\), der Verstärkungsfaktor ist aber aufgrund der Dämpfung unterhalb der 1-Marke, d.h. die Amplitude ist kleiner als 1.

      Die Dämpfung ist sogar so stark, dass es gar nicht zu einer eigentlichen Schwingung kommt. Das System schlägt etwas aus und kommt dann wieder zurück.

      Anregung bei starker Dämpfung (erzwungene Schwingung)
      Wird ein schwingfähiges System mit Eigenfrequenz angeregt, so wird bei starker Dämpfung die Amplitude ebenfalls abgeschwächt. Das System ist aber so stark gedämpft, dass es gar nicht mehr zum Überschwingen kommt.

      Feedback

      Post Feedback Form

      Autor dieses Artikels:

      David John Brunner

      Lehrer für Physik und Mathematik | Mehr erfahren

      publiziert:

      überarbeitet:

      publiziert:

      überarbeitet:

      Frage oder Kommentar?

      Frage/Kommentar?

      Schreib deine Frage / Kommentar hier unten rein. Ich werde sie beantworten.

      Schreibe einen Kommentar

      GRATIS Scripts und Formelsammlungen
      Praktische Hacks lernen…
      …im Hacker-Club!
      Andere Artikel zu diesem Thema
      • Gedämpfte Schwingungen

      • Energie in Schwingungssystemen

      • Elektrischer Schwingkreis

      • Schwingungen

      • Harmonische Schwingungen