Gerade und ungerade Funktionen

Das Wichtigste in Kürze

Gerade Funktionen sind spiegelsymmetrisch bezüglich der \(y\)-Achse:

\[ f(x) = f(-x) \]

Ungerade Funktionen sind punktsymmetrisch bezüglich dem Ursprung:

\[ f(x) = -f(-x) \]

Tutorial Videos

(Es gibt leider keine Tutorial Videos zu diesem Thema)

→ Weitere Videos

Free Tutorial Videos

(keine Tutorial Videos zu diesem Thema)

→ Weitere Videos

Die Eigenschaft gerade oder ungerade zu sein, ist nur für wenige Funktionen anwendbar. Die meisten Funktionen sind weder noch. Es ist aber eine wichtige und nützliche Eigenschaft, die wir immer wieder verwenden werden. Deshalb ist es wichtig, diese Eigenschaft zu kennen.

Gerade Funktionen sind spiegelsymmetrisch bezüglich der \(y\)-Achse:

\[ f(x) = f(-x) \]

Ungerade Funktionen sind punktsymmetrisch bezüglich dem Ursprung:

\[ f(x) = -f(-x) \]

Wenn wir das Vorzeichen des Arguments umkehren, dann ändert das nichts am Funktionswert der geraden Funktion. Denn die gerade Funktion liefert für \(x\) und für \((-x)\) den gleichen Funktionswert. Der Funktionsverlauf ist spiegelsymmetrisch zur \(y\)-Achse.

Bei der ungeraden Funktion haben wir eine Punktsymmetrie bezüglich dem Ursprung. Das Umkehren des Vorzeichens des Arguments führt zu einem umgekehrten Vorzeichen beim Funktionswert.

Beispiel

Untersuche die Quadratfunktion \(f(x)=x^2\) darauf, ob sie die Eigenschaft gerade oder ungerade oder keine von beiden hat.


Der Funktionsgraph der Quadratfunktion ist eine Parabel und sie ist um die y-Achse spiegelsymmetrisch. Wir nehmen irgendeinen \(x\)-Wert, z.B. \(x=3\) und schauen, ob die Funktion für den ‘’Spiegelpunkt’’ \(x=-3\) den gleichen Wert ergibt:

\[ f(3)=3^2=9 \]

\[ f(-3)=(-3)^2=9 \]

Das könnte aber auch ein Glückstreffer sein! Deshalb untersuchen wir diese Eigenschaft für einen beliebiges Argument \(x\):

\[ f(x) = x^2 \quad , \quad f(-x) = (-x)^2 = x^2 \quad \Rightarrow \quad \underline{f(x) = f(-x)} \]

Die Funktion \(f(x)=x^2\) erfüllt die Eigenschaft einer geraden Funktion für alle \(x\).

Weitere Videos

(keine externe Youtube-Videos zu diesem Thema)

  • Gerade, ungerade oder unsymmetrische Funktionen? (5062-2)

    19 min 45 s

    Du musst dich hier einloggen, um zum Video zu gelangen.

    Login

    Noch kein Login?

    Jetzt gratis Zugang erhalten

Aufgabensammlung

  • Funktionen und Umkehrfunktionen (5062) – Aufg. 2

    4 Teilaufgaben (pdf/Video-Lösung):
    Gerade, ungerade oder unsymmetrische Funktionen?

    Du musst dich hier einloggen, um zur Aufgabe zu gelangen.

    Login

    Noch kein Login?

    Jetzt gratis Zugang erhalten

Mini-Test

Um Zugang zum Mini-Test zu kriegen,
musst du vollwertiges Mitglied im Hacker-Club sein.

Feedback

Post Feedback Form

Autor dieses Artikels:

David John Brunner

Lehrer für Physik und Mathematik | Mehr erfahren

publiziert:

überarbeitet:

publiziert:

überarbeitet:

Frage oder Kommentar?

Frage/Kommentar?

Schreib deine Frage / Kommentar hier unten rein. Ich werde sie beantworten.

Schreibe einen Kommentar

GRATIS Scripts und Formelsammlungen
Praktische Hacks lernen…
…im Hacker-Club!
Übergeordnetes Thema:
    • Funktionen

    Weitere Artikel zu diesem Thema:
      • Achsabschnitt

      • Definitions- und Wertebereich

      • Grenzwert

      • Funktionen strecken und stauchen

      • Funktionen verschieben

      • Wertetabelle und Funktionsgraph

      • Stetigkeit

      • Monotonie

      • Funktionsgleichungen

      • Umkehrfunktionen

      • Nullstellen