Harmonische Reihe

Das Wichtigste in Kürze

Die harmonische Reihe \(\boldsymbol{s_n}\) ist die Reihe zur konvergenten Folge \(a_n=\frac{1}{n}\). Die harmonische Reihe ist divergent.

Tutorial Videos

(Es gibt leider keine Tutorial Videos zu diesem Thema)

→ Weitere Videos

Free Tutorial Videos

(keine Tutorial Videos zu diesem Thema)

→ Weitere Videos

Die harmonische Folge ist definiert als \(a_n = \frac{1}{n}\). Mit immer grösser werdendem Zähler werden die Glieder der Folge immer kleiner, wie wir es im Plot sehr schön sehen können.

Die zu dieser Folge gehörende harmonische Reihe hat eine erstaunliche Eigenschaft. Die Glieder der Reihe werden immer grösser ohne dass sie sich einem Wert annähern. Sie steigen und steigen und im Unendlichen werden sie unendlich gross! Man sagt auch, dass die Reihe divergent ist, d.h. im Unendlichen “quasi explodiert”.

Beachten Sie, dass die Folgen \(b_n = \frac{1}{n^2}\) oder \(c_n = \frac{1}{n^3}\) etc. Reihen bilden, die sich sehr wohl einem endlichen Wert annähern. Man nennt sie konvergent.

Weitere Videos

(keine externe Youtube-Videos zu diesem Thema)

(keine Aufgaben-Videos zu diesem Thema)

Mini-Test

Um Zugang zum Mini-Test zu kriegen,
musst du vollwertiges Mitglied im Hacker-Club sein.

Feedback

Post Feedback Form

Autor dieses Artikels:

David John Brunner

Lehrer für Physik und Mathematik | Mehr erfahren

publiziert:

überarbeitet:

publiziert:

überarbeitet:

Frage oder Kommentar?

Frage/Kommentar?

Schreib deine Frage / Kommentar hier unten rein. Ich werde sie beantworten.

Schreibe einen Kommentar

GRATIS Scripts und Formelsammlungen
Praktische Hacks lernen…
…im Hacker-Club!
Übergeordnetes Thema:
    • Reihen

    Weitere Artikel zu diesem Thema:
      • Geometrische Reihen (GR)

      • Arithmetische Reihen (AR)

      • Summenzeichen