Harmonische Reihe

Das Wichtigste in Kürze

Die harmonische Reihe \(\boldsymbol{s_n}\) ist die Reihe zur konvergenten Folge \(a_n=\frac{1}{n}\). Die harmonische Reihe ist divergent.

    Tutorial Videos

    (Es gibt leider keine Tutorial Videos zu diesem Thema)

    → Weitere Videos

    Free Tutorial Videos

    (keine Tutorial Videos zu diesem Thema)

    → Weitere Videos

    Die harmonische Folge ist definiert als \(a_n = \frac{1}{n}\). Mit immer grösser werdendem Zähler werden die Glieder der Folge immer kleiner, wie wir es im Plot sehr schön sehen können.

    Die zu dieser Folge gehörende harmonische Reihe hat eine erstaunliche Eigenschaft. Die Glieder der Reihe werden immer grösser ohne dass sie sich einem Wert annähern. Sie steigen und steigen und im Unendlichen werden sie unendlich gross! Man sagt auch, dass die Reihe divergent ist, d.h. im Unendlichen “quasi explodiert”.

    Beachten Sie, dass die Folgen \(b_n = \frac{1}{n^2}\) oder \(c_n = \frac{1}{n^3}\) etc. Reihen bilden, die sich sehr wohl einem endlichen Wert annähern. Man nennt sie konvergent.

    Weitere Videos

    (keine externe Youtube-Videos zu diesem Thema)

    (keine Aufgaben-Videos zu diesem Thema)

    Mini-Test

    Um Zugang zum Mini-Test zu kriegen,
    musst du vollwertiges Mitglied im Hacker-Club sein.

    Feedback

    Post Feedback Form

    Autor dieses Artikels:

    David John Brunner

    Lehrer für Physik und Mathematik | Mehr erfahren

    publiziert:

    überarbeitet:

    publiziert:

    überarbeitet:

    Frage oder Kommentar?

    Frage/Kommentar?

    Schreib deine Frage / Kommentar hier unten rein. Ich werde sie beantworten.

    Schreibe einen Kommentar

    GRATIS Scripts und Formelsammlungen
    Praktische Hacks lernen…
    …im Hacker-Club!
    Übergeordnetes Thema:
      • Reihen

      Weitere Artikel zu diesem Thema:
        • Geometrische Reihen (GR)

        • Arithmetische Reihen (AR)

        • Summenzeichen